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Abstract

The application of the principal neural network architecture, namely the multilayer perceptron (MLP), has been developed
for obtaining sufficient quantitative structure–retention relationships (QSRR) with high accuracy. The present study is an
extension to the excellent study of Cserhati et al. [LC–GC Int., 11 (1998) 240] for the retention behavior of solutes based on
their structure. To this end, a dataset of 25 substances as solutes to two different stationary phases (polyethylene–silica and
polyethylene–alumina) were analyzed to their structural descriptors and related to their retention behavior as expressed by
the logarithms of their capacity factors (log k9). The results were compared to those of Cserhati et al. who studied the same
problem using as many as ten different equations based on multiple regression analysis. In the present study a series of new
and improved algorithms other than the ‘old-fashioned’ and problematic steepest descent were examined for training the
MLP networks. The proposed methods led to substantial gain in both the prediction ability and the computation speed of the
resulting models. For the development and evaluation of the artificial neural network (ANN) systems the same (eight)
descriptors proposed by Cserhati were used also in this study. Furthermore, the results were compared to those produced
from classical linear multivariate regression such as partial least squares regression (PLS). Some of the proposed ANN
models diminished the number of outliers, during their implementation to unseen data (solutes), to zero.  2000 Elsevier
Science B.V. All rights reserved.
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1. Introduction ary phases, for the better understanding of the
retention process, and to provide a valuable chro-

The interest in studies dealing with the retention matographic tool for highlighting the molecular
behavior of solutes in different stationary phases mechanisms of retention in a given HPLC system.
has been increased substantially the last years [1]. In almost all of these studies much effort is con-
In these studies the major aim is to develop im- centrated on the calculation of structural descrip-
proved expert systems capable to predict and de- tors, which characterize the examined solutes. In
scribe the retention capability of different station- the literature several models have been described,

from linear to nonlinear ones in order to calculate
these values as accurately as possible [2]. In the*Tel.: 130-1-7274-224; fax: 130-1-6130-285.
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described, based on advanced algorithms, in order visualize, and the underlying theme of multivariate
to predict accurately the log k9 values of 25 struc- analysis (MVA) is thus the description of a polyno-
turally diverse aromatic solutes (Table 1) in two mial in which the dependent variables are related to
stationary phases in isocratic HPLC systems and to the independent variable(s). Known methods for this
provide efficient QSRR models. include the multiple regression analysis, experimen-

QSRR studies can be used for the selection of tal design techniques, nonlinear regression. The
principal physicochemical characteristics (descrip- drawback, sometimes, of these very popular tech-
tors), their relation to retention values and the niques is their inability to give highly predictive
derivation of mathematical models that involve these models due to hidden nonlinearity inside the data
multivariate data in order to be used for predictive variables or the prerequisite to specify the mathe-
purposes in every HPLC system. Multivariate data matical model before the fitting of the data. So there
consist of the results of observations of many is a need to improve further such kind of models in
different variables (physicochemical descriptors) for order to extract the most accurate prediction. To this
a number of individuals (molecules). Each variable end artificial neural networks (ANN) [3] and espe-
may be regarded as constituting a different dimen- cially the ‘supervised’ ones could be used successful-
sion, such that if there are n variables each object ly in QSRR studies providing better results than the
may be said to reside at a unique position in an conventional regression models.
abstract entity referred to as n-dimensional hyper- In the following study we shall examine the
space. This hyperspace is necessarily difficult to behavior of a series of training algorithms in the

Table 1
aStructures, physicochemical parameters and observed log k9 values of the examined solutes in two stationary phases

H H HR p Sa Sb V m d V log k9(1) log k9(2)2 2 2 2 x max aq

Hexylbenzene 0.591 0.5 0 0.15 1.562 0.351 0.1326 649.7 4.56 3.721

1,3,5-Tris(1-methylethyl)benzene 0.627 0.4 0 0.22 1.985 0.014 0.1309 777.15 4.887 4.147

1,4-Dinitrobenzene 1.13 1.63 0 0.41 1.065 0 0.5652 451.02 0.969 0.774

3-(Trifluoromethyl)phenol 0.425 0.87 0.72 0.09 0.969 2.096 0.4649 432.38 0.975 0.995

3,5-Dichlorophenol 1.02 1.1 0.83 0 1.02 1.408 0.2239 440.2 1.502 1.528

4-Hydroxybenzonitrile 0.94 1.63 0.79 0.29 0.93 3.313 0.2237 409.94 0.396 0.372

4-Iodophenol 1.38 1.22 0.68 0.2 1.033 1.586 0.2213 434.24 1.174 1.173

Methoxybenzene 0.708 0.75 0 0.29 0.916 1.249 0.1481 407.98 0.835 0.589

Benzamide 0.99 1.5 0.49 0.67 0.973 3.583 0.3448 418.21 0.303 20.069

Benzene 0.61 0.52 0 0.14 0.716 0 0.1301 331.81 0.584 0.313

Chlorobenzene 0.718 0.65 0 0.07 0.839 1.307 0.1466 375.23 1.129 0.916

Cyclohexanone 0.403 0.86 0 0.56 0.861 2.972 0.1111 383.84 0.337 0.867

Dibenzothiophene 1.959 1.31 0 0.18 1.379 0.524 0.4465 555.67 3.041 3.126

Phenol 0.805 0.89 0.6 0.3 0.775 1.233 0.2173 353.02 0.099 0.047

1,1,2,3,4,4-Hexachloro-1,3-butadiene 1.019 0.85 0 0 1.321 0.001 0.0606 516.73 3.248 3.426

1H-Indazole 1.18 1.25 0.54 0.34 0.905 1.546 0.2752 405 0.822 0.647

3,7-Dihydro-1,3,7-trimethyl-1-H-purine-2,6-dione 1.5 1.6 0 1.35 1.363 3.708 0.401 569.32 1.616 1.042

4-Nitrobenzoic acid 0.99 1.07 0.62 0.54 1.106 3.431 0.5643 467.67 20.899 20.924

1-Methyl-2-pyrrolidone 0.491 1.5 0 0.95 0.82 3.594 0.307 381.5 0.257 20.699

Naphthalene 1.34 0.92 0 0.2 1.085 0 0.132 458.91 1.769 1.583

4-Chlorophenol 0.915 1.08 0.67 0.2 0.898 1.478 0.2201 396.25 0.758 0.758

Methylbenzene 0.601 0.52 0 0.14 0.716 0.263 0.1301 384.44 1.027 0.829

Piperazine 0.57 0.83 0.2 1.17 0.763 1.995 0.1583 355.56 0.797 0.252

Piperidine 0.422 0.46 0.1 0.69 0.804 1.168 0.1554 368.5 0.574 20.021

Benzonitrile 0.742 1.11 0 0.33 0.871 3.335 0.1451 388.93 0.705 0.337

a H H HR , excess molar refraction; p , solute dipolarity /polarizability; Sa , solute overall hydrogen bond acidity; Sb , solute overall2 2 2 2

hydrogen bond basicity; V , McGowan characteristic volume; m, total dipole moment; d , electron excess charge on an atom in solutex max

molecule; V , solvent (water) accessible molecular volume.aq
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behavior of feedforward neural networks and the can be written as 8-5-1 ANN and is commonly
results will be compared with published ones [4] as referred to as a fully interconnected feedforward
well as with the results from the PLS method [5]. multilayer perceptron. The examined architecture 8-

5-1 generates 51 adjustable parameters when there
are only 25 observations and someone could ask for

2. Method possible overfitting during ANN training. In ANN
applications nets are often used with many times

2.1. ANN topology more parameters than training cases. Nelson and
Illingworth [10] discuss training a network with

ANN topologies [6–9], or architectures, are 16 219 parameters with only 50 training cases.
formed by organizing nodes into layers and linking Furthermore, Lawrence et al. [11] have shown that it
these layers of neurons with modifiable weighted can be difficult to reduce training error to a level
interconnections. A diagrammatic representation of near globally optimal value, even when using more
the ANN used in the present study consisting of 8 weights than training cases. But increasing the
inputs (the proposed descriptors) and 1 output (log k9 number of weights makes it easier to find a good
values) connected to each other by 1 hidden layer local optimum, so using ‘oversize’ networks can
consisting of 5 nodes (5 was chosen through trial and reduce both training and testing error. Sarle [12]
error) is shown in Fig. 1. In the fully connected suggests that if it is used early stopping (as in the
topology shown the 8 nodes in the input layer are present case — see later) it is essential to use lots of
connected to the 5 nodes in the hidden layer, by 40 hidden units to avoid bad local optima. Finally
connection weights, which in turn are connected to Weigend [13] suggests that, if it used early stopping,
the 1 output node, by a further 5 connection weights. there seems to be no upper limit on the number of
In addition, there is also a bias (extra node), which hidden units other than that imposed by computer
always has an activation level of 11, which is time and memory requirements.
connected to nodes in the hidden and output layers In the present study in order to avoid overfitting
(but not the input layer) via modifiable weighted early stopping proceeded as follows: (a) division of
connections (extra 6 connections). Such architecture the available data into training and validation sets (b)

Fig. 1. Schematic representation of the architecture and the way of processing of the examined MLP network.
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usage of a large number of hidden units and (c) the network performance function. The default per-
compute the validation error during training (d) stop formance function for feedforward networks is the
training when the validation error rate start to mean square error (MSE) — the average squared
deteriorate. Early stopping has several advantages: it error between the network outputs and the target
is fast, it can be applied successfully to networks in outputs.
which the number of weights far exceeds the sample In the beginning of the training two backpropaga-
size (as in the present study) and it requires only the tion training algorithms were used: gradient descent
division of the data set into training and validation and gradient descent with momentum. These two
(see later). methods are often too slow for practical problems.

The above 8-5-1 architecture is rather simple and To overcome this problem we examined several
the question arises ‘‘How does one choose the high-performance algorithms, which can converge
number x of nodes in the hidden layer?’’ There is no from 10 to 100 times faster than the algorithms
theory yet to suggest how many hidden unit are examined previously. All of these algorithms train
needed to approximate any given function. Some faster and fall into two main categories. The first
rule of thumb relates the total number of trainable category uses heuristic techniques, which were de-
weights in the network to the number of training veloped from an analysis of the performance of the
cases. A typical recommendation is that the number standard steepest descent algorithm. Such heuristic
of weights should be no more than 1/30 of the modifications include the use of momentum, variable
number of training cases. Such do not apply when learning rate backpropagation, and resilient back-
regularization (such as early stopping) is used [12]. propagation. The second category of fast algorithms
For the present study the ‘trial and error’ was uses standard numerical optimization techniques
adopted starting from 10 hidden units and reducing such conjugate gradient, quasi-Newton and Leven-
their number to 1 unit. The network with 5 units berg–Marquardt (Table 2).
gave the best generalization. In most of the training algorithms that we have

already examined, a learning rate is used to de-
2.2. Training the neural network termine the length of the weight update (step size). In

most of the conjugate gradient algorithms the step
The first step is to choose the input variables and size is adjusted at each iteration. A search is made

the dataset. In the present study we use the dataset of along the conjugate gradient direction to determine
25 aromatic compounds (Table 1) acting as solutes the step size which will minimize the performance
to an isocratic HPLC system with two different function along that line. There are different search
stationary phases and as inputs eight physicochemi- functions that best suited to certain training func-
cal descriptors (Table 1). Before training a feedfor- tions, although the optimum choice can vary accord-
ward network, the weights and biases must be ing to the specific application and could be found
initialised. For feedforward networks with sigmoid with trial and error. In the present study, for the
layers, as in the present study, the function of choice conjugate gradient algorithms we used the
for initialisation is based on the technique of Nguyen Charalambous’ search algorithm [15], since it ap-
and Widrow [14]. After that the inputs and targets peared to produce excellent results while for the
are normalized so that they will have zero mean and quasi-Newton algorithms we got best results with the
unity standard deviation. backtracking algorithm [16].

Once the network weights and biases have been Newton’s method is an alternative to the conjugate
initialised, and the scaling has been applied, the gradient methods for fast optimization. It requires the
network is ready for training. The network can be calculation of the Hessian matrix (second deriva-
trained for function approximation (nonlinear regres- tives) of the performance index at the current values
sion). The training process requires a set of examples of the weights and biases. Newton’s method often
of proper network behavior — network inputs and converges faster than conjugate gradient methods.
target outputs. During training the weights and biases Unfortunately, it is complex and expensive to com-
of the network are iteratively adjusted to minimize pute the Hessian matrix for feedforward neural
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Table 2
Algorithms used for training the standard feed-forward MLP networks and the resulted mean square error, post training correlation
coefficient R and the number of outliers

aAlgorithm MSE Post train R Outliers
bLevenberg–Marquardt backpropagation 0.018 (0.023) 0.996 (0.992) 0 (0)

Polak-Ribiere conjugate gradient backpropagation 0.025 (0.031) 0.989 (0.99) 1 (0)
BFGS quasi-Newton backpropagation 0.031 (0.038) 0.971 (0.972) 1 (2)
Scaled conjugate gradient backpropagation 0.041 (0.046) 0.965 (0.969) 2 (1)
Powell-Beale conjugate gradient backpropagation 0.042 (0.045) 0.955 (0.957) 3 (3)
Fletcher-Powell conjugate gradient backpropagation 0.041 (0.039) 0.956 (0.962) 3 (2)
Gradient descent w/momentum and adaptive lr backprop. 0.075 (0.079) 0.855 (0.859) 4 (3)
Gradient descent w/adaptive lr backpropagation 0.12 (0.093) 0.819 (0.850) 4 (3)
One step secant backpropagation 0.067 (0.065) 0.839 (0.822) 4 (4)
Resilient backpropagation (Rprop) 0.063 (0.075) 0.855 (0.802) 4 (4)
Gradient descent backpropagation 0.19 (0.23) 0.62 (0.73) 4 (5)
Gradient descent w/momentum backpropagation 0.278 (0.293) 0.65 (0.65) 5(5)

a 9 9An outlier had u log k 2log k u$0.2.obs pred
b Numbers in parenthesis correspond to values with the second stationary phase.

networks. There is a class of algorithms that are present study a series of algorithms (Table 2)
based on Newton’s method but which do not require recently applied to MLP networks and their efficacy
calculation of second derivatives. These are called (in terms of computational time, number of epochs,
quasi-Newton (or secant) methods. The quasi-New- minimized error criterion) will be compared with that
ton method which has been used most successful in of the traditional ones (steepest descent with momen-
published studies is the Broyden, Fletcher, Goldfarb tum and learning rate). As will be shown later the
and Shanno (BFGS) [17]. performances differ significantly making the algo-

Like the quasi-Newton methods, the Levenberg– rithm selection an important step in the design of
Marquardt (LM) algorithm [18,19] was designed to ANNs.
approach second-order training speed without having
to compute the Hessian matrix. Instead it calculates
the Jacobian matrix, which contains first derivatives 2.3. Linear multivariate regression
of the network errors with respect to the weights and
biases. The Jacobian matrix can be computed The predictive ability of the examined ANN was
through a standard backpropagation technique that is compared further to that of classical multivariate
much less complex than computing the Hessian regression. A popular technique for multivariate
matrix. LM is an advanced non-linear optimization regression is the partial least squares (PLS) regres-
algorithm that can be used to train the weights in a sion [5] with cross-validation as an important con-
network, just as back propagation would be. It is cept that helps to identify the appropriate number of
usually the fastest and most reliable algorithm avail- factors (or latent variables, lv) to use. Generally, PLS
able for such training. The LM algorithm has estab- can be used to develop regression models that relate
lished its reputation from nonlinear regression prob- a number of independent or predictor variables (X-
lems were it is used successfully, as in the case of block) to one or more dependent or predicted vari-
capacity factor calculations in enantiomeric sepa- ables (Y-block). PLS relies on a decomposition of the
rations [20] or on binding constant calculations in X-block (the eight descriptors in the present study)
complexation of cyclodextrins with fluorescent com- based on covariance criteria. PLS finds factors (latent
pounds [21]. variables) that are descriptive of X-block variance

All these algorithms can, however, prove par- and are correlated with the Y-block (log k9). PLS is
ticularly useful for problems where high precision is advantageous to ordinary multiple linear regression
required as in the case of QSRR predictions. In the (MLR) since it examines for collinearities in the
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predictor variables (i.e. some variables are linear 3.1. Comparison of different MLP architectures
combinations of other variables). The PLS model and training algorithms
converges to MLR solution if all latent variables are
included in the model. There are several ways to A standard technique in neural networks is to train
calculate PLS models, with the most commonly used the network using one set of data, but to check
the non-iterative partial least squares (NIPALS) and performance against a validation set not used in
the SIMPLS algorithms, both of them giving exactly training. Without validation, a network with a large
the same results for univariate y. The computational number of weights can overfit the training data —
approaches for these two algorithms are well de- loosing the underlying structure. The ability of a
scribed in textbooks and are beyond the scope of the network not only to learn the training data, but to
present study. perform well on previously-unseen data, is known as

generalization. During training although the training
error decreases almost to zero, the validation error
first decreases and then begins to rise again (Fig. 2).

3. Results This is a sure sign that overlearning is occurring, and
training should stop once deterioration in the valida-

The algorithms and the architectures described tion error is observed (epoch 12 in the example of
briefly in the previous section highlight almost all the Fig. 2). Further to the validation data set, strictly
available possibilities in designing effectively MLP speaking, it is highly recommended the examination
networks with high accuracy. We have performed a of network’s performance against a third set of data
QSRR study using the data in Table 1. The correla- which has not been used in both the training and
tion matrix (not shown) of the examined inputs validation process. This is the test set. To this end,
highlighted a strong linear relationship (collinearity) the 25 compounds were divided into three data sets
between inputs 5 and 8 and one should decide to namely the training set of 15 compounds, the valida-
exclude one of these variables from the input layer. tion set of 5 compounds and the test set of 5
Since the purpose of the present study is the com- compounds to examine the predictive ability of the
parison to the published results (where inputs 5 and 8 examined MLP networks. The main requirement
are present) it was decided not to exclude one of during training is the data representativity, meaning
these inputs from the architecture of ANN and PLS that the samples in the data set should be (evenly)
models. This particular set of solutes has been spread over the expected range of data variability. In
studied already and is ideal for the purpose of order to avoid the risk of not selected representative
comparison. The neural network systems were simu- samples during training, as happens with random
lated using MATLAB NEURAL NETWORK TOOLBOX [22] selections, we performed (results not shown) two
running on a Pentium II platform. The input data different strategies of training set design suggested
were scaled before training. Training continued until by Wu et al. [23] and Simon et al. [24], namely the
there was no further decrease in overall error after a D-optimal design (maximizing the determinant of the
period of 500 cycles and the average training time information matrix uX9Xu) and the Kohonen self-
for each run was few minutes for the examined organizing map approach (the main goal is to map
feedforward networks. Three-layer neural networks, objects from n-dimensional into two-dimensional
with eight input units and one output unit, were space). Applying these methods, the samples chosen
simulated in all cases. The eight inputs correspond to were spread in the whole space. Having defined the
the eight descriptors and the one output to the log k9 number of inputs and outputs, the number of hidden
values (Table 1). The quality of QSRR was assessed layers and the nodes in each layer the networks were
by three statistical variables: (MSE, post-training ready for training. Each network was simulated 30
least squared correlation coefficient and the number times with different initializations of the weights and
of outliers — the meaning of outlier is presented as a the resulting networks were tested against the 5
footnote in Table 2). unseen compounds (test set). Once the best network
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Fig. 2. Training and validation error diagrams during the training procedure.

was determined it was examined further by scram- output units have linear activation functions. Gener-
bling the input variables in order to examine any ally, for interpolation problems, where we wish to
chance effect in the prediction ability of the isolated generate mappings whose outputs represent smoothly
network. The input scrambling did not deteriorate varying quantities, it is convenient and sufficient to
network’s performance indicating robustness in its choose the output unit activation functions to be
prediction. Finally, in order to identify possible linear. The selection of the number of hidden neu-
chance effects, another test was performed. During rons is usually done by trial and error. The goal is to
this test the matrix of independent variables was kept find a network with a minimum number of neuron
constant while the vector of dependent variables was connections that are able to solve the problem.
randomly scrambled running the same algorithms Networks with many connections can learn a prob-
described above. The same procedure was repeated lem perfectly, but their predictive ability may be
several times and the results obtained were sig- very low. A network with one hidden layer of eight
nificantly inferior (higher RMSEP) to the previous neurons was found to be sufficient to solve the
ones, indicating that the results with the real data present problem of predicting the log k9 of aromatic
were not obtained due to chance effects. solutes. The final step in the design of the MLP

It should also be mentioned that from a selection networks was the selection of the training algo-
of different activation functions the best results were rithms. It is obvious from the current study that the
obtained using a sigmoid transfer function in the algorithm selection is of major importance con-
hidden layer and a linear function in the output layer. cerning the networks’ predictive ability.
With sigmoidal hidden units, the universal approxi- The examined algorithms are presented in Table 2
mation properties of the network hold even if the together with the training error (MSE), the post
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training correlation coefficient R and the number of
outliers. The algorithms examined in the present
study range from the problematic steepest descent
with momentum and learning rate up to the BFGS
and LM second order algorithms, which converge
rapidly, and they do not need the presence of any
adjusting parameters such as momentum and learn-
ing rate. It is surprising the gain in network per-
formance using some of these algorithms, and espe-
cially the LM, meaning time to converge and number
of outliers (Table 2). The LM algorithm in most
initializations converges almost after 20 epochs
without any further error improvement in the follow-
ing epochs (up to 1000). Also the conjugate gradient
algorithm showed almost the same behavior but with
lower degree of accuracy in its prediction. In Table 2
the algorithms are sorted according to their efficacy,
from the higher to lower predictive ability. The
performance of a trained network can be measured to
some extent by the errors on the training, validation
and test subsets, but in the present study we investi-
gated the network response in more detail. To this
end a regression analysis between the network
responses in the whole dataset and their corre-
sponding observed values was performed. This study
returns the correlation coefficient (R value) between
the predicted and observed values, a measure of how
well the ANN fits the dataset and generalizes,
meaning its predictive ability in new (unseen)
datasets. Fig. 3 shows the linear relationships be-
tween the calculated values for the log k9 of the first
stationary phase, the predicted following the trained
ANN with the LM algorithms and the PLS methods
and the published ones. The same relationships (not
shown) were resulted by the second stationary phase.

From Table 2 it is becoming evident that the LM
algorithm resulted in the best performance with zero
outliers in five new (unseen) solutes and the highest
correlation coefficient of 0.996. Increasing the num-
ber of hidden neurons the correlation coefficient was
decreased with an increase in the number of outliers
(overtraining). Generally, the primary indicator for
choosing the network architecture is the number of
outliers in unseen (new) data. Polak-Ribiere conju-
gate gradient algorithm (PRCG) follows the per-
formance of LM algorithm resulting in one outlier in Fig. 3. Linear fit for the calculated (experimental) log k9 values
the test data set. One outlier resulted also from the against the predicted ones from the ANN and PLS models and the
BFGS and scaled conjugate gradient algorithms published ones.
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while the predicted values in the unseen data set usually has the fastest convergence. The quasi-New-
were in both cases less accurate than the ones ton methods are often the next fastest algorithms; the
derived from the PRCG algorithm. With three out- BFGS algorithm does require storage of the approxi-
liers follow two conjugate gradient algorithms (Pow- mate Hessian matrix, but is generally faster than the
l-Beale and Fletcher-Powell). Finally, the worst conjugate gradient algorithms. The variable learning
performance with four and five outliers was seen rate algorithm is usually much slower than the other
from the different types of backpropagation algo- methods but it can still be useful for comparison
rithms (see Table 2). Further to the higher prediction reasons or in cases which require slow convergence.
ability of the algorithms (LM and PRCG) the time
for training was decreased substantially to less than a 3.2. Partial least squares regression
minute.

Having established a configuration for the neural PLS was applied to our example problem of
network, a testing procedure was carried out. During developing a model that relates the log k9 to the eight
this process five compounds were removed from the descriptors. As before, we will divide the 25 samples
training data sets and served as test set. After available in training validation and test subsets as
training, the parameters of the compound unknown before. Next to the division of dataset, PLS model
to the network were put into the network and the attempts to maximize covariance (to do both, capture
predictive activities of these compounds were ob- variance and achieve correlation). The question that
tained (Table 3). From the values in Table 3 it is arises is: how many factors (latent variables) should
becoming evident the superior predictive ability of be chosen for maximum covariance? Either the rule
ANN (with the lowest prediction error) compared to of thumb that one should choose additional factors
that of the published results and to that from the PLS when the predicted residual sum of squares (PRESS)
procedure (see later). The ANN predictive values for the test subset improves by at least 2% could be
differed by at most 0.18 leading to even higher used, or thr graphic representation of the behaviour
accuracy and providing reliable predictions. of the root-mean-square error of cross-validation

It is becoming evident that it is difficult to know ‘a (RMSECV) which is a measure of the model’s
priori’ which training algorithm will be the best and ability to predict new samples. Fig. 4 shows the
the fastest for a given problem. It depends on many graphical representation of the number of factors
factors, including the complexity of the problem, the against RMSECV and RMSEC (root-mean-square
number of data points in the training set, the number error of calibration; it tells us about the fitting of the
of weights and biases in the network and the error model to the calibration data). From Fig. 4 it is
goal. In general, the LM algorithm converges fast becoming evident that the model with 4 latent
and this advantage is especially noticeable if very variables performs the best prediction. In latent
accurate training is required, as in the present study. variables 5–8 even if the RMSEC continues to
Of the conjugate gradient algorithms, the Powell- decrease there is a significant increase in RMSECV.
Beale procedure requires the most storage, but The development of a PLS model with 4 factors

Table 3
Test set of five solutes, the observed (experimental) log k9, the predicted from the network trained with the LM algorithm the predicted from
the PLS method and the published ones [4]

Solutes Experimental ANN predicted PLS predicted Published
a1 0.758 (0.758) 0.718 (0.706) 0.712 (0.655) 0.818 (0.633)

2 1.027 (0.829) 0.918 (0.905) 1.230 (1.232) 1.256 (1.112)
3 0.797 (0.252) 0.618 (0.365) 0.261 (0.298) 0.455 (0.296)
4 0.574 (20.021) 0.495 (20.156) 0.850 (0.196) 0.798 (0.648)
5 0.705 (0.337) 0.745 (0.398) 0.729 (0.389) 0.512 (0.267)

RMSEP – 0.103 (0.092) 0.254 (0.211) 0.229 (0.331)
a Numbers in parenthesis correspond to log k9 with the second stationary phase.



128 Y.L. Loukas / J. Chromatogr. A 904 (2000) 119 –129

lished results and the results from the PLS regres-
sion. Is the present set of the eight descriptors
(inputs) the most representative (predictive) for the
examined case? This question could not be answered
straightforwardly since the extraction of the signifi-
cant variables, further to the examination of possible
strong relationships, requires the development of
methods such as genetic algorithms, which will be
described in detail in a forthcoming study. In any
ANN study the accuracy could probably be increased
further by performing input preprocessing, meaning
to find a more representative group of inputs.

References

[1] M. Balcan, T. Cserhati, E. Forgacs, D.F. Anghel, Biomed.
Fig. 4. RMSEC and RMSECV vs. latent variables in PLS training Chromatogr. 13 (1999) 225.
and validation procedure. [2] E. Forgacs, T. Cserhati, J. Pharm. Biomed. Anal. 18 (1998)

505.
[3] C. Bishop, Neural Networks for Pattern Recognition, Uni-

results the predictions shown in Table 3. In Table 3 versity Press, Oxford, 1995.
[4] T. Cserhati, E. Forgacs, K. Payer, P. Haber, R. Kaliszan, A.the root-mean-square error of predictions (RMSEP)

Nasal, LC–GC Int. 11 (1998) 240.is also presented when the examined models are
[5] D.L. Massart, B.G.M. Vandeginste, L.M.C. Buydens, S. deapplied to new data provided that the reference

Jong, P.J. Lewi, J. Smeyers-Verbeke (Eds.), Handbook of
(calculated) values for the new data are known. Chemometrics and Qualimetrics: Part B, Elsevier, Amster-
RMSEP is calculated as follows: dam, 1998, Chapter 35.

[6] L. Fausett, Fundamentals of Neural Networks, Prentice Hall,]]]]]n New York, 1994.
2O y 2 yu u [7] J. Zupan, J. Gasteiger, Neural Networks For Chemists, VCHobs pred

1 Verlagsgesellschaft, Weinheim, 1993.]]]]]RMSEP 5œ n [8] G.C. Looney, Pattern recognition using neural networks,
Oxford University Press, New York, 1997.

The superior performance of ANN model compared
[9] D.E. Rumelhart, J.L. McClelland, Parallel Distributed Pro-

to that of PLS and the published results is evident cessing. Experiments in the Microstructure of Cognition,
from the RMSEP values. MIT Press, Cambridge, MA, 1986.

[10] M.C. Nelson, W.T. Illingworth, A Practical Guide To Neural
Nets, Addison-Wesley, Reading, MA, 1991.

[11] S. Lawrence, G.L. Giles, A.C. Tsoi, What Size Neural
4. Conclusion Networks Gives Optimal Generalization? Convergence Prop-

erties of Backpropagation. Technical report, UMIACS-TR-
96-22 and CS-TR-3617, Institute for Advanced ComputerThe data set of the 25 substances as solutes to
Studies, University Maryland, College Park, MD, 1996.

different stationary phases is a representative sample [12] W.S. Sarle, Stopped training and other remedies for overfit-
from the population of solute–stationary phase inter- ting, in: Proceedings of the 27th Symposium on the Interface
actions where it is necessary to model the interaction of Computing Science and Statistics, 1995, p. 352.

[13] A. Weigend, On overfitting and the effective number ofprocedure and to predict the log k9 values. The
hidden units, in: Proceedings of the 1993 Connectionistalgorithms for training the feed-forward networks
Models Summer School, 1994, p. 335.

such as the LM or PRCG improved the predictions [14] D. Nguyen, B. Widrow, Proceedings of the International
for unseen data and the networks reached a signifi- Joint Conference on Neural Networks, 3 (1990) 21.
cant level of accuracy outperformed both the pub- [15] C. Charalambous, IEEE Proc. 139 (1992) 301.



Y.L. Loukas / J. Chromatogr. A 904 (2000) 119 –129 129

[16] J.E. Dennis, R.B. Schnabel, Numerical Methods for Uncon- [20] Y.L. Loukas, Anal. Chem. 70 (1998) 966.
strained Optimization and Nonlinear Equations, Prentice- [21] Y.L. Loukas, J. Phys. Chem. B 101 (1997) 4863.
Hall, Englewood Cliffs, NJ, 1983. [22] Matlab version 5.2, MathWorks 24 Prime Park Way, Natick,

[17] J.C. Principe, N.R. Euliano, W.C. Lefebvre, Neural and MA.
Adaptive Systems: Fundamentals Through Simulations, [23] W. Wu, B. Walczak, D.L. Massart, S. Heuerding, E. Erni, I.R.
Wiley, 2000. Last, K.A. Prebble, Chem. Intell. Lab. Syst. 33 (1996) 35.

[18] K. Levenberg, Quart. J. Appl. Math. II 2 (1944) 164. [24] V. Simon, J. Gasteiger, J. Zupan, J. Am. Chem. Soc. 115
[19] D.W. Marquardt, J. Soc. Indust. Appl. Math. 11 (1963) 431. (1993) 9148.


